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a b s t r a c t 
Defining and computing distances between tree structures is a classical area of study in theoretical com- 
puter science, with practical applications in the areas of computational biology, information retrieval, text 
analysis, and many others. In this paper, we focus on rooted, unordered, uniquely-labelled trees such as 
taxonomies and other hierarchies. For trees as these, we introduce the intuitive concept of a ‘local move’ 
operation as an atomic edit of a tree. We then introduce SuMoTED, a new edit distance measure between 
such trees, defined as the minimal number of local moves required to convert one tree into another. We 
show how SuMoTED can be computed using a scalable algorithm with quadratic time complexity. Finally, 
we demonstrate its use on a collection of music genre taxonomies. 

© 2016 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

1. Introduction 1 
The problem of computing how (dis)similar two trees are, and 2 

the related problem of computing a consensus between a set of 3 
trees, has applications in computational biology, chemistry, music 4 
genre analysis, and automatic theorem-proving [14,18,23,25] . For 5 
example, calculating the distance between RNA secondary struc- 6 
tures (which have a tree structure) is necessary to understand 7 
their comparative functionality [26] . Taxonomies, such as the one 8 
shown in Fig. 1 , offer another natural application area. Indeed, 9 
quantifying the similarity between different taxonomies may pro- 10 
vide insight into what might be the consensus as well as the 11 
nature of any subjective differences between different taxonomy 12 
creators. 13 

Given the wide range of application areas listed above, it is not 14 
surprising that computing the similarity between trees is an ac- 15 
tively studied problem within computer science, and the literature 16 
is abundant with similarity measures for various types of trees. 17 
However, computational tractability is often a problem. For exam- 18 
ple, for rooted, unordered, fully-labelled trees (trees with a root, in 19 
which every vertex is labelled and the left-to-right order of siblings 20 
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carries no significance, such as taxonomies and other hierarchies), 21 
a recent survey [5] discusses three distances that are all NP-hard. 22 
More details are presented in Section 2 . 23 

The current paper aims to tackle this problem in a specific 24 
setting by introducing the Subtree Moving Tree Edit Distance 25 
(SuMoTED): a new tree distance measure with several appealing 26 
properties. First, it is an edit distance, defined intuitively as the 27 
minimum number of atomic local moves of vertices up and down 28 
required to turn one tree into the other, weighted by the size of 29 
the moved subtree. Second, it is not only intuitive but is also a 30 
metric distance, meaning it is easy to use in a wide range of in- 31 
formation retrieval and machine learning algorithms. For example, 32 
distance-based methods for clustering often require the distance 33 
measure to be metric, and metric properties are also used for ef- 34 
ficient document retrieval in databases. Third, it can be computed 35 
in a time that is quadratic in the total number of vertices in the 36 
trees. Finally, our method produces a consensus tree as part of the 37 
procedure, allowing us to compute the agreement between a set of 38 
trees at no additional cost. 39 

We begin this paper with a literature survey on tree distances 40 
in Section 2 . Subsequently, we define SuMoTED as a novel dis- 41 
tance measure between two rooted, unordered, uniquely-labelled 42 
trees ( Section 3 ). We then give an efficient algorithm for its com- 43 
putation ( Section 4 ), before evaluating SuMoTED experimentally in 44 
Section 5 and concluding in Section 6 . 45 
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Fig. 1. Music genre hierarchy proposed by Tzanetakis and Cook [25] . 
2. Related work 46 
2.1. Distances between trees 47 

The task of defining and computing distances between trees 48 
can be considered a special case of the graph comparison prob- 49 
lem, which has an extensive literature: see Gao et al. [13] for a 50 
summary. When the graphs are directed and contain no cycles, the 51 
graph becomes a Directed Acyclic Graph (DAG)—some authors have 52 
studied the distances between DAGs [6,16] . Most graph and DAG 53 
distances could ofcourse be deployed for trees. Despite this, often 54 
the particular structure of trees such as the notion of a root, the 55 
unique parent of a vertex, or sibling relationships, are important 56 
in designing meaningful tree distance measures, such that mea- 57 
sures for graphs become unnatural when applied to trees. 1 For 58 
this reason, defining tree distances has become and active research 59 
topic. Bille [5] offers a comprehensive overview of the most com- 60 
mon methods for comparing trees, including best-known time and 61 
space complexity bounds. Here we give only an overview, referring 62 
the reader to Bille for further details. 63 

The first and most widely-used method for comparing trees is 64 
the tree edit distance , introduced by Tai [24] as an extension of the 65 
well-known string edit distance. Tai allows insertion, deletion and 66 
substitution of vertices in order to convert a source tree T s into a 67 
target tree T t . A cost function is then applied to these operations 68 
(most commonly setting the cost of each transformation to unity), 69 
and the minimum number of these operations is defined to be the 70 
distance between T s and T t . Several algorithms have been proposed 71 
to efficiently solve the tree edit distance, but only on ordered trees 72 
or other special cases. The case for unordered trees is known to be 73 
NP-hard [5] . In the original formulation of the tree edit distance, 74 
inserting a vertex u between a vertex v and its parent p meant that 75 
u became a child of p , and v and all of its descendants became a 76 
child of u . Restrictions were also introduced such as the top-down 77 
distance [21] which only allowed insertions to occur at leaves. An- 78 
other modification is the bottom-up distance: let the number of 79 
nodes in the source and target tree be n s and n t and the size of 80 
the largest common forest of T s and T t be f . The distance between 81 
T s and T t is then defined to be 1 − f/ max (n s , n t ) . The best known 82 

1 This is particularly true for edit distances: edit operations for graphs could cre- 
ate loops in a tree, which would lead to problems in interpretability. 

algorithm for the bottom-up problem is linear in n s and n t , and is 83 
applicable to both ordered and unordered trees. 84 

Tree alignment is an alternative method and proceeds as follows. 85 
Nodes with no labels are inserted into T s and T t until they are iso- 86 
morphic 2 , producing T ′ s and T ′ t . This produces an alignment tree 87 
A , whose vertex labels are pairs of labels taken from T ′ s and T ′ t . 88 
The cost of A is the total cost of substituting each vertex pair such 89 
that they are equal—the tree alignment distance between T s and 90 
T t is the minimum such cost. Finally, the tree inclusion problem is 91 
to determine if T t may be obtained from T s via deleting nodes. As 92 
with the tree edit distance for unordered trees, computing either 93 
the tree alignment distance or the tree inclusion problem is MAX 94 
SNP-hard [5] . 95 
2.2. Computing c onsensus t rees 96 

Given a set of trees, a distinct but clearly related task to the 97 
tree distance problem is to determine what information is shared 98 
by the set. Shasha et al. [22] claims there are five commonly- 99 
used methods for achieving this, which we review here. The first 100 
was introduced by Adams III [1] and is known as the Adams con- 101 
sensus in the literature. This method is applicable to both fully- 102 
labelled and leaf-labelled trees (where only leaf vertices have la- 103 
bels). Leaf-labelled trees are more common in taxonomic biological 104 
applications. Next, Day [11] proposed a new method for comput- 105 
ing the consensus, and also introduced a distance measure based 106 
on the number of common subtrees found within two trees in the 107 
collection—this method is known as the strict consensus . 108 

Margush and McMorris [17] pointed out that in the case that 109 
many of the trees in a large set are identical (say, equal to T ) and 110 
one differs from T by a single edge, that the consensus should be 111 
equal to T . To achieve this, he introduced the majority rule con- 112 
sensus , where a parent –child relationship in the consensus is only 113 
introduced if at least half the trees share the same link. The semi- 114 
strict consensus tree for leaf-labelled trees [7] includes all subtrees 115 
by Adams’ method, but also any subtrees which are not contra- 116 
dicted by other members of the group. Finally, the Nelson consen- 117 
sus [20] consists of the set of mutually compatible subtrees that 118 
are most frequently replicated in the group. 119 

Interestingly, the computation of a con s ensus tree can be con- 120 
sidered a special case of frequent subtree mining, an area of re- 121 
search which has received a good deal of attention in recent years 122 
[4,8,9] . 123 
2.3. Limitations of existing work 124 

As seen above there are many existing methods which either 125 
compute the distance between trees, or compute a consensus be- 126 
tween a set of trees. Yet, all existing distance measures suffer from 127 
one of both of the following problems: 128 

Computational cost We are interested in the case of uniquely- 129 
labelled unordered trees as these occur frequently in application 130 
areas (such as biological sequence analysis, text mining and mu- 131 
sic information retrieval). Although, to the best of our knowledge, 132 
this specific case has not been studied, for general unordered la- 133 
belled trees the three existing distances discussed above (tree edit 134 
distance, alignment distance and tree inclusion) are not efficiently 135 
computable. 136 

Interpretability The top-down and bottom-up distances, which 137 
can be computed efficiently, are defined in terms of disruptive edit 138 
operations that may occur at any point in the tree, irrespective of 139 
the depth of the vertex they occur on. We find this unsatisfactory, 140 

2 T 1 and T 2 are isomorphic if there exists a tree isomorphism between them: a 
bijection of the nodes which preserves the edges and maps the root of T 1 to the 
root of T 2 . 
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especially for applications related to taxonomies, where, for exam- 141 
ple, substituting/deleting a child of the root has a dramatic effect 142 
on the taxonomy, while that is not accounted for in the measure. 143 

As noted above, there exist efficient methods for computing the 144 
consensus between sets of trees. We discovered during the devel- 145 
opment of our own algorithm however that it produces a consen- 146 
sus tree as a natural part of the procedure, which is equivalent to 147 
the strict consensus. 148 
3. SuMoTED — Subtree Moving Tree Edit Distance 149 

This section introduces the first main contribution of the paper: 150 
a novel distance measure between trees, named SuMoTED (Subtree 151 
Moving Tree Edit Distance). For the sake of mathematical rigour, 152 
we formalise this distance in terms of vertex-labelled graphs and 153 
supply all main proofs. The high-level concept however may be un- 154 
derstood by defining a local move on a tree as a small ‘re-wiring’ 155 
of the edge connecting a vertex to its parent. The set of all possi- 156 
ble local moves from a source tree then forms an extremely large 157 
graph, with the edit distance being the shortest path from source 158 
to target tree over this graph. We begin by introducing some nota- 159 
tion and basic definitions. 160 

Throughout, T ( V , E , R ) will represent a tree with directed edges 161 
(v , w ) ∈ E ⊆ V × V over a set of vertices V , and root R ∈ V . We de- 162 
note the set of all possible trees with a given vertex set V and root 163 
R as T V,R . We will also use T and T for brevity when V , E , R are 164 
clear from the context. Note that |T V,R | = n n −2 with n = | V | (Ca- 165 
ley’s number, [15] ). To simplify notation we also define the parent 166 
function of a vertex: 167 
Definition 1 (Parent function) . The parent function of a tree T ( V , 168 
E , R ) on a vertex v , denoted Pa T (v ) is defined as Pa T (v ) = w ⇔ 169 
(w, v ) ∈ E. 170 

We also define a particular type of tree in which each vertex is 171 
the child of the root, known as the bush over V with root R . 172 
Definition 2 (Bush) . A tree T ( V , E , R ) is called the bush over V 173 
with root R , denoted B ( V , R ) if the edge set E is such that E = 174 
{ (R, v ) | v ∈ V \ { R }} . 175 
3.1. Tree e dit d istances 176 

This subsection introduces our proposed method for computing 177 
the edit distance between trees 3 . Quantifying the distance between 178 
arbitrary trees T , T ′ ∈ T directly is challenging. However, for cer- 179 
tain pairs of extremely similar trees, such a quantification is often 180 
intuitive—for example, if there is exactly one edge which differs. 181 
Denoting the set of (ordered) tree pairs ( T , T ′ ) between which this 182 
distance can be quantified as E, and the corresponding distance as 183 
the output of a real-valued weight function W ( T , T ′ ), we can define 184 
a weighted directed graph over the set of all trees T , which we 185 
call an edit graph : 186 
Definition 3 (Edit graph, local tree edit) . Let E ⊆ T × T represent 187 
a set of ordered tree pairs, with a positive and finite real-valued 188 
weight function W : E → R + mapping each pair (T , T ′ ) ∈ E onto a 189 
weight W ( T , T ′ ). Then, the weighted graph G (T , E, W ) will be re- 190 
ferred to as the edit graph . The operation of changing a tree T into 191 
a neighbo u r of this tree in the edit graph, will be referred to as a 192 
local tree edit applied to T . 193 

Clearly, to construct this graph, weights representing distances 194 
need to be specified only for the pairs of nearby trees in E . Yet, it 195 

3 Note that Tai [24] coined their method tree edit distance . In this paper we use 
this term to refer to a class of methods that quantify the distance between trees in 
terms of edit operations, rather than this specific method . 

allows one to define a distance d ( T , T ′ ) for any pair of trees ( T , T ′ ) 196 
as the tree edit distance —the weight of the shortest path between 197 
the vertices representing T and T ′ in the edit graph: 198 
Definition 4 (Tree edit distance) . Given an edit graph G (T , E, W ) 199 
over all trees T , the tree edit distance d : T × T → R between T 200 
and T ′ is defined by: 201 
d(T , T ′ ) = min 

n,T 0 ,T 1 , ... ,T n 
n ∑ 

i =1 W (T i −1 , T i ) , 
s.t. n ∈ Z + , (T i −1 , T i ) ∈ E ∀ i, T 0 = T , T n = T ′ , 
if this problem is feasible, and ∞ otherwise. 202 

Criteria for a good edit graph. The challenge in defining a good 203 
tree edit distance is twofold: deciding which trees are not too dis- 204 
tant (which amounts to specifying E), and deciding how distant 205 
precisely these trees are (specifying W ). Intuitively, we wish the 206 
edit graph to satisfy the following two criteria: 207 
1. Symmetry: if (T , T ′ ) ∈ E, then also (T ′ , T ) ∈ E, and W (T , T ′ ) = 208 

W (T ′ , T ) . 209 
2. Connectedness: all T , T ′ ∈ T are connected by a path in the edit 210 

graph. This means that the distance between any pair of trees 211 
is finite: d ( T , T ′ ) < ∞ , ∀ T , T ′ ∈ T . 212 
Properties of tree edit distances Any tree edit distance d , sat- 213 

isfying symmetry and connectivity has two appealing properties: 214 
Proposition 1. d is a distance metric over the set of trees T . 215 
Proof. Non-negativity and identity of indiscernibles follow from 216 
the definition. Symmetry follows from the symmetricity of the edit 217 
graph. Finally, the triangle inequality follows directly from the fact 218 
that for any T , T ′ , T ′′ ∈ T , the shortest path between T and T ′ ′ is 219 
at most as long as the sum of the distances of the shortest paths 220 
between T and T ′ , and T ′ and T ′ ′ ! 221 

This proposition has an important immediate corollary regard- 222 
ing bushes which we will later rely on: 223 
Corollary 1. For any T , T ′ ∈ T V,R : 224 
d(T , T ′ ) ≤ d(T , B (V, R )) + d(T ′ , B (V, R )) . 
Proof. From symmetricity and the triangle inequality on d . ! 225 

In Subsection 3.2 and 3.3 we discuss how the criteria of sym- 226 
metricity and connectedness of the edit graph can be reali s ed. Note 227 
that for simplicity in these sections we assume the label sets of 228 
the source and tree are identical—this assumption will be relaxed 229 
in Subsection 3.5 . 230 
3.2. Local m oves as t ree e dits 231 

We will now define the set of edges E of the edit graph in 232 
terms of a tree operation we refer to as a local move , which 233 
amounts to deleting the edge between a vertex and its parent, and 234 
adding an edge between either the edge’s grandparent, or one of 235 
its siblings: 236 
Definition 5 (Local move) . A local move on a tree T ( V , E , R ) is 237 
an operation that changes it into a tree T ′ ( V , E ′ , R ) with E ′ = (E \ 238 
{ ( Pa T (v ) , v ) } ) ∪ { (w, v ) } where w is either Pa T ( Pa T (v )) —the grand- 239 
parent of v —or w is a sibling of v . A local move is called upward 240 
when w is Pa T ( Pa T (v )) , and downward otherwise. 241 

Local upward and downward moves are illustrated in Fig. 2 . Lo- 242 
cal moves satisfy both our desired criteria: 243 
Proposition 2. With local moves as edits, and a weight function 244 
which assigns equal weights to upward and downward moves, the edit 245 
graph G (T , E, W ) is symmetric. 246 
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a b c

Fig. 2. Local move operations on vertex F . In (a), the vertex F and all its descen- 
dants (the triangle) are moved from being a child of B to be a child of A (F’s grand- 
parent). (b): F and its descendants become a child of one of F’s siblings, D. Finally, 
in (c), F moves to be a child of its other sibling E. 
Proof. After a local upward move, the parent of the child vertex 247 
becomes its sibling. Thus, this type of move can be undone by 248 
rewiring the affected edge to a sibling. Similarly, after a down- 249 
ward move, the parent of the child vertex becomes its grandpar- 250 
ent. Thus, this local move can be undone by rewiring the rewired 251 
edge to its grandparent. Since the costs of moves are equal, both 252 
operations have equal cost and G is therefore symmetric. !253 
Proposition 3. With local moves as edits, the edit graph G (T , E, W ) 254 
is connected. 255 
Proof. Any tree T ( V , E , R ) is connected to the bush B ( V , R ). Indeed, 256 
an upward move on a tree decreases the sum of the depths of the 257 
vertices in the tree by an amount of at least 1. Furthermore, any 258 
tree that is not a bush will have a vertex to which an upward move 259 
can be applied. Thus, we can successively apply upward moves to T 260 
and be sure that eventually the bush B ( V , R ) will be reached. From 261 
the symmetry of the edit graph, this also implies that any tree can 262 
be reached from the bush by a sequence of downward moves. Put 263 
together, there exists a path between any arbitrary pair of trees 264 
T ( V , E , R ) and T ′ ( V , E ′ , R ), namely one that passes via the bush 265 
B ( V , R ). !266 
3.3. The w eight f unction for l ocal m oves 267 

Having defined the set of edges E of the edit graph as those 268 
between any pair of trees that are separated by one local move , 269 
we now need to define the weight function W ( T , T ′ ) of such an 270 
edge. A simple approach would be to set W (T , T ′ ) = 1 for any pair 271 
(T , T ′ ) ∈ E . However, note that a local move allows for arbitrarily 272 
large groups of vertices to move up or down the tree quickly and 273 
cheaply. For example, in Fig. 2 ( a ), we see that all the descendants 274 
of F have been moved up to be children of the root vertex at no 275 
extra cost. To account for the varying number of vertices that are 276 
affected, we therefore define the weight function as the total size 277 
of the subtree with root v . This means that the weight is equal to 1 278 

in the case where v is a leaf, and equal to 1 more than the number 279 
of descendants of v in general. 280 
3.4. A normalised similarity measure 281 

A weakness of our proposed measure is that it will tend to 282 
be larger for larger | V |, such that distances between pairs of trees 283 
of different sizes are hard to compare. Recall that two trees can 284 
always be reached using local moves which passes through the 285 
bush—this is therefore an upper bound on the distance between 286 
two trees. In order to be able to compare scores of trees of differ- 287 
ent sizes, we propose a normali s ation scheme in which we divide 288 
the distance between two trees d ( T , T ′ ) by the sum of the distances 289 
from T , T ′ to the bushes: d(T , B (V, R )) + d(T ′ , B (V, R )) . Often it is 290 
also more convenient to use similarity measures, so we define the 291 
normali s ed similarity between T , T ′ ∈ T V,R as: 292 
s (T , T ′ ) = 1 − d(T , T ′ ) 

d(T , B (V, R )) + d(T ′ , B (V, R )) ∈ [0 , 1] (1) 
3.5. An extension to trees with different label sets 293 

So far, we have assumed that the trees we compare are label- 294 
set consistent (meaning that the number of vertices and number 295 
of labels coincide). When T ∈ T V,R and T ∈ T V ′ ,R with V ̸ = V ′ , we 296 
generali s e the tree edit distance metric d as follows: Add each 297 
vertex v ∈ V \ V ′ as a direct child of the root R in T , yielding 298 
T + ∈ T (V ∪ V ′ , R ) . Similarly, add each vertex v ∈ V ′ \ V as a direct 299 
child to the root R in T ′ , yielding T ′ + ∈ T (V ∪ V ′ , R ) . We then de- 300 
fine the distance d ( T , T ′ ) as d(T + , T ′ + ) . Placing ‘unseen’ vertices as 301 
children of the root is conducted as we have no prior information 302 
on any better position to place them. Note that if we consider this 303 
step to be preprocessing, the (un-normalised) distance maintains 304 
its metric property. An example of the optimal set of operations 305 
to convert a source tree into a target tree (as well as to the nor- 306 
mali s ing bush) is shown in Fig. 3 , and is also available animated in- 307 
teractively online at http://www.interesting-patterns.net/ds4dems/ 308 
sumoted-demo/ . Python code to compute SuMoTED is available on- 309 
line 4 . 310 
4. An efficient algorithm to compute SuMoTED 311 

Computing SuMoTED amounts to finding the shortest path from 312 
the source tree to the target tree (T , T ′ ) ∈ E in the edit graph 313 
G (T , E, W ) . Effective algorithms (polynomial complexity in number 314 
of vertices and edges) for computing the shortest path between a 315 
given pair of vertices in a graph exist [10] . However, the graph in 316 
our case is far too large for such an approach to be feasible (re- 317 
call from earlier: |T V,r | = | V | | V |−2 ). Remarkably, we have discovered 318 
a fast algorithm for computing SuMoTED between any pair of trees 319 
that is polynomial (quadratic) in the size of the trees , rather than in 320 
the size of the edit graph. The current section outlines this algo- 321 
rithm, which is based on the following theorem: 322 
Theorem 1. Given trees T , T ′ ∈ T , the shortest path in the edit graph 323 
between T and T ′ is equally as long as the shortest path that consists 324 
of a sequence of local upward moves, followed by a sequence of local 325 
downward moves. 326 

The proof of the theorem rests on the following Lemma: 327 
Lemma 1. Let (T 0 , . . . , T n ) be a shortest path of trees between T 0 and 328 
T n . Assume that there exists 0 < i < n such that T i is reached from 329 
T i −1 by a downward move, and T i +1 is reached from T i by an upward 330 
move. Then it is always possible to replace the subpath (T i −1 , T i , T i +1 ) 331 

4 https://github.com/mattmcvicar/SuMoTED 
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Fig. 3. Example of our proposed edit distance d ( T , T ′ ). Intermediate trees are shown between blue arrows, together with the cost of edit. The severed edge for each tree in Q3 
the bottom row are shown as dashed arrows. This (optimal) overall path has length 3 + 1 + 2 + 1 + 1 + 1 = 9 , normalised similarity 1 − (9 / (9 + 4)) ≈ 0 . 31 . The consensus 
DAG is shown in the top-right, from which we have generated the tree using solid arrows. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article). 
for another subpath between T i −1 and T i +1 of equal cost that consists 332 
of a sequence of upward moves followed by a sequence of downward 333 
moves. 334 
Proof. Let (Pa T i −1 (v ) , v ) be the edge involved in the downward 335 
move on T i −1 , and (Pa T i (w ) , w ) the edge involved in the upward 336 
move on T i . These moves can simply be swapped without alter- 337 
ing the resulting tree T i +1 and the total cost, as long as Pa T i −1 (v ) ̸ = 338 
P a T i (w ) . When P a T i −1 (v ) = Pa T i (w ) , on the other hand, the two 339 
moves can be replaced with two upward moves followed by one 340 
downward move. Referring to Pa T i −1 (v ) = Pa T i (w ) as u , and to the 341 
parent of u (in T i −1 , T i , as well as T i +1 ) as z , these moves should 342 
be: 343 
1. An upward move of edge (u, v ) , replacing (u, v ) with (z, v ) . 344 
2. An upward move of edge (u, w ) , replacing (u, w ) with (z, w ) . 345 
3. A downward move of edge (z, v ) , replacing (z, v ) with (w, v ) . 346 

It is easy to verify that these three moves have the same cost 347 
as the total cost of the original downward and upward moves. !348 
Proof of Theorem 1. Given any optimal path, iteratively apply 349 
Lemma 1 until no more downward moves can be found that are 350 
followed by an upward move. !351 

Theorem 1 implies that the edit distance d ( T , T ′ ) can be ex- 352 
pressed in terms of a consensus tree T c : 353 
Definition 6 (Consensus tree) . A consensus tree for two trees 354 
T , T ′ ∈ T is a tree T c ∈ T that can be reached from T as well as 355 
from T ′ using local upward moves only. 356 

By symmetry, Theorem 1 can be rephrased as saying: a shortest 357 
path from T to T ′ exists in the edit graph that consists of upward 358 
moves to T c , followed by downward moves to T ′ . Theorem 2 shows 359 
that the distance between T and T c which can be reached using 360 
upward moves only from T depends only on T , T c : 361 
Theorem 2. Define a partial order between all vertices in a given tree 362 
T as follows: 5 363 
P T = { (v , w ) | w is a descendant of v in T } , 

5 P T can equivalently be defined as the reflexive transitive closure of the edge set 
E for a tree T( V , E , R ) . 

where we consider v to be a trivial descendant of itself. The to- 364 
tal distance of any path (T 0 , . . . , T c ) in the edit graph for which T i 365 
is reached by a local upward move from T i −1 for all i , is given by 366 
d(T 0 , T c ) = | P T 0 | − | P T c | . 367 
Proof. When an upward move on vertex v is applied to T i to yield 368 
T i +1 , the number of pairs removed from P T i is equal to the size of 369 
the subtree rooted at v . Indeed, the only change is that all descen- 370 
dants of v (including v itself) no longer have Pa T i (v ) as an ances- 371 
tor. Thus, d( T i , T i +1 ) = | P T i | − | P T i +1 | . For a sequence of local upward 372 
moves (T 0 , T 1 , . . . , T c ) , this means that the total path length in the 373 
edit graph is ∑ c 

i =1 d( T i −1 , T i ) = ∑ c 
i =1 | P T i −1 | − | P T i | = | P T 0 | − | P T c | . ! 374 

The following is a direct consequence of the definition of 375 
SuMoTED and the previous theorem: 376 
Corollary 2. Given T , T ′ ∈ T : d(T , T ′ ) = min T c | P T | + | P T ′ | − 2 | P T c | , 377 
subject to T c being a consensus tree. 378 

Thus, to compute the d ( T , T ′ ), all that is needed is to compute 379 
the size of the largest partial order P T c over all consensus trees T c 380 
for T and T ′ . Clearly, P T c ⊆ P T ∩ P T ′ , and when the Hasse diagram 381 
[3] of P T ∩ P T ′ is a tree, the optimal P T c = P T ∩ P T ′ . However, in gen- 382 
eral, the Hasse diagram of P T ∩ P T ′ is a DAG. The task of maximizing 383 
| P T c | then amounts to finding a subtree of this DAG representing 384 
the largest possible partial order. This optimal consensus tree can 385 
be found via a layer-assignment algorithm known as the Longest 386 
Path Algorithm , which has linear time complexity [19] . Briefly, given 387 
P T ∩ P T ′ this algorithm proceeds as follows: 388 
• Initialise T c ( V c , E c , r ) with V c = { r} , E c = {} . 389 
• Iterate: For each vertex v for which all w with (w, v ) ∈ P T ∩ P T ′ 390 

are in T c , identify the deepest such vertex w in T c , and insert v 391 
into V c and (w, v ) into E c . 392 
This algorithm ensures that each vertex is maximally deep in 393 

the tree, such that the transitive closure of the tree is as large as 394 
possible. The detailed proof works by induction: It is true for the 395 
root, and given that it is true for a partial tree already built, it is 396 
also true for the new vertices and edges added in each iteration. It 397 
can be verified that the overall computational complexity of com- 398 
puting SuMoTED for T , T ′ ∈ T V,r is O (| V | 2 ). 399 
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Fig. 4. Edit cost (below diagonal) and normali s ed similarity (above diagonal) be- 
tween the ground truth Deezer taxonomy and annotators ( A 1 –A 6) and for the 
Ground Truth. Right: for the ReverbNation dataset. 
5. Experiments 400 

In this section we conduct a case study, applying SuMoTED to 401 
three hierarchical datasets which describe popular music genres. 402 
The genre of a song is a high-level musical attribute frequently 403 
used for music organisation, playlisting, searching, and recommen- 404 
dation. Often, songs are tagged with a set of labels which are hier- 405 
archically arranged into a musical genre taxonomy. Unfortunately, 406 
different musical experts and professional music services use very 407 
different sets of genre labels in their categorisation schemes. Even 408 
when these label sets overlap, they are often structured differently 409 
which complicates their use for the applications listed above. To 410 
investigate how SuMoTED could be used to analyse these kinds of 411 
data, we experimented with three datasets: a small dataset where 412 
the “true” hierarchy is known (5.1) , a medium-size dataset with 413 
no existing ground truth (5.2) , and a large-scale dataset consisting 414 
of commercially-used music genre hierarchies where the label sets 415 
do not coincide (5.3) . Finally, we investigate the scalability of our 416 
method in 5.4 . 417 
5.1. Deezer dataset 418 

The music genre taxonomy used by the web-based music 419 
streaming service Deezer was used in these experiments, featur- 420 
ing n = 101 genres. We asked 6 annotators (referred to as A 1 –A 6 421 
hereafter) to construct a taxonomy from these genres without con- 422 
sulting the reference annotation or each other. We then computed 423 
the SuMoTED (via cor ollary 2 ) and normalised similarity ( Eq. 1 ) be- 424 
tween each pair of annotations. Results can be seen on the left 425 
of Fig. 4 . From this Figure, we see that the normali s ed similarities 426 
are all equal to unity when the taxonomies are equal (diagonal en- 427 
tries), as expected. We see that annotator A 4 was the closest to 428 
the Deezer reference (normalised similarity 0.72), and that annota- 429 
tors A 2 and A 5 were the most similar to each other (0.75). Annota- 430 
tor A 5 has the highest mean similarity to other taxonomies (0.66), 431 
meaning A 5 could be considered the ‘centre of mass’ of the set of 432 
references. We were also interested in the overlap between anno- 433 
tations, so we computed the Hasse diagram of the intersection of 434 
all annotations in Fig. 5 . Interestingly, this Figure shows that there 435 
was no consensus as to placement of rock and its descendants in 436 
the taxonomy. For example, A 2 listed alternative as a child of rock , 437 
whereas in the Deezer reference this relationship was reversed. 438 
5.2. ReverbNation dataset 439 

From an existing project, we had 251 unique genre labels stored 440 
from a set of over 50, 0 0 0 independent UK music artists from 441 
ReverbNation.com . As before, A 1 –A 6 were asked to make a taxon- 442 
omy from this larger dataset. The annotator similarities are shown 443 
in the right matrix of Fig. 4 . From this matrix, we see that simi- 4 4 4 

Fig. 5. Hasse diagram for the intersection of the Deezer taxonomies. Genres which 
were found to be a child of Music with no further children in common are omitted 
for brevity. 
Table 1 
Comparison of existing taxonomies used in industry. Above diagonal entries show 
normali s ed distance, below show Jaccard index. 

Normali s ed similarity 
A(allmusic) D(eezer) iT(unes) W(iki) 

Jaccard A – 0.01 0.05 0.07 
D 0.04 – 0.12 0.01 
iT 0.16 0.16 – 0.06 
W 0.15 0.03 0.10 –

larities are generally lower—we found that this was a result of the 445 
increased depth of some of the taxonomies specified in the Reverb- 446 
Nation dataset. For example, A 4 had one vertex of depth 6: Music 447 
→ electronic → edm → uk → dnb → breakbeat → breakcore —two 448 
levels deeper than any vertex in 5.1 . Interestingly, in both sets of 449 
experiments A 2 and A 5 had the highest similarity, followed by A 4 450 
and A 5. 451 
5.3. Commercial datasets 452 

We sourced four genre hierarchies for use in these experi- 453 
ments: the Deezer dataset used above ( n = 101 genres), Allmusic 454 
( n = 1 062 ), iTunes (340), and Wikipedia (730). As the label sets of 455 
these taxonomies did not coincide, we computed the Jaccard sim- 456 
ilarity of the label sets to investigate how similar they were. See 457 
Table 1 for these results. We see from this Table that the similari- 458 
ties between taxonomies (below-diagonal) are low in magnitude. 459 
These values highlight and quantify the huge discrepancies be- 460 
tween the choice of genre labels companies use when constructing 461 
a taxonomy. Above-diagonal entries are also close to 0.0, indicat- 462 
ing that there is little similarity between industrially-used music 463 
genre hierarchies—something speculated about in previous work 464 
[2] but never quantified. Given that these similarities were close 465 
to zero, we wondered if they were significantly larger than ran- 466 
dom. To assess this, we conducted a permutation test : for each tree 467 
we generated a number of trees with identical topology but ran- 468 
domly permuted labels. For given similarity between ‘true’ trees S , 469 
an empirical p - value was then computed: 470 
ˆ p = | permuted trees with similarity ≥ S| + 1 

| permuted trees | + 1 
However, in all our experiments ( Subsection 5.1 –5.3 ), we never 471 
found a random tree pair with similarity greater than or equal to 472 
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Fig. 6. Scalability of our algorithm in practice. 10 Random trees with n (horizon- 
tal axis) nodes were created and their average distance computation time (vertical 
axis) was measured. 
the true tree pairs, for 99 randomly-generated trees. Results were 473 
in fact generally around 3 orders of magnitude lower. This resulted 474 
in empirical p - values of 0.01 and indicates that all the similari- 475 
ties we computed were significantly more self-similar than random 476 
taxonomies at the 1% level. 477 
5.4. Scalability experiments 478 

We were interested in seeing how our algorithm scales with 479 
input size. To this end, we computed the time required to compute 480 
the distance between several random trees with a fixed number of 481 
nodes. Random trees with n nodes labelled { 1 , . . . , n } with fixed 482 
root 1 were created as follows: labels 2 , . . . , n were first randomly 483 
permuted, and then attached to one of the existing nodes in the 484 
tree until all labels were exhausted. 485 

We created 10 trees for each n using the above procedure, com- 486 
puted their pairwise distance, and recorded their average compu- 487 
tation time. Experiments were conducted in the Python program- 488 
ming language on a laptop with 2.6 GHz Intel Core i5 processor 489 
and 8GB 1600 MHz DDR3 memory running OSX El Capitan 10.11.2. 490 
Results can be seen in Fig. 6 . From this Figure, we see that our 491 
method scales reasonably well to large tree sizes. We can com- 492 
pute the distance between two trees with 1 0 0 0 nodes (consistent 493 
with industrial datasets) comfortably in under 1 min . The quadratic 494 
trend seen in the Figure is consistent with the theoretical result 495 
presented in Section 4 . The code was implemented in the most 496 
intuitive way possible, with no particular optimisation for data 497 
structures or subroutines—further improvements in time complex- 498 
ity may therefore improve the results seen in Fig. 6 . Recall that the 499 
implementation is available online. 500 
6. Conclusions and future work 501 

We have presented a novel distance between trees, called 502 
SuMoTED, defined as an edit distance via local moves . SuMoTED 503 

has several appealing properties: it is a metric distance in the un- 504 
normalised setting, is computable in quadratic time, and is appli- 505 
cable to trees with different label sets. As a case study, we used 506 
this distance metric to investigate the consistency between anno- 507 
tators and existing music genre taxonomies, finding high similarity 508 
between human-generated taxonomies in the case of small label 509 
sets. We were also able to construct consensus annotations using 510 
our method, which gave musical insight into agreed-upon hierar- 511 
chical genre relationships amongst annotators. Besides the study 512 
of commonalities and differences between various trees (such as 513 
taxonomies), SuMoTED is ideally suited for more advanced analy- 514 
ses such as clustering trees. Furthermore, it can be used to quan- 515 
tify the performance of methods designed for inferring taxonomies 516 
from data. 517 

We focu s sed on music genre taxonomies in the current paper, 518 
but are excited by the prospect of using our method to compute 519 
taxonomy similarities in some of the domains listed in the intro- 520 
duction of this paper. For example, we could use SuMoTED to in- 521 
vestigate the similarities between biological or textual trees. A fur- 522 
ther idea for future research is the investigation of information cas- 523 
cades [12] , where trees are formed by information flowing through 524 
a network. Also, we would like to investigate if our method can be 525 
used to construct and evaluate methods which infer a taxonomy 526 
from data, as this could be useful is assessing how reliable such a 527 
taxonomy is. Finally, it appeared that there are no results on the 528 
complexity of existing tree distance measures for the case when 529 
all node labels are unique. This would also be worth investigating. 530 
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