
Our reference: PATREC6510
AUTHOR QUERY FORM

Journal: PATREC

Article Number: 6510

Please e-mail your responses and any corrections to:

E-mail: correctionsaptara@elsevier.com
Dear Author,
Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation
in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then
please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections
within 48 hours.
Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT
correct and your article belongs to a Special Issue/Collection please contact j.alwyn@elsevier.com immediately prior to returning
your corrections.
For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions
Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the
proof. Click on the ‘ Q ’ link to go to the location in the proof.

Location Query / Remark: click on the Q link to go
in article Please insert your reply or correction at the corresponding line in the proof

Q1 AU: The author names have been tagged as given names and surnames (surnames are highlighted in teal color).
Please confirm if they have been identified correctly.

Q2 AU: Please provide one more keyword as per journal requirement.
Q3 AU: Fig. [3] has been submitted as colour images; however, the captions have been reworded to ensure that

they are meaningful when your article is reproduced both in colour and in black and white. Please check and
correct if necessary.

Q4 AU: Please provide the volume number for the bibliography in Refs. [1, 16 and 20].
Please check this box or indicate your approval if
you have no corrections to make to the PDF file

Thank you for your assistance.

mailto:correctionsaptara@elsevier.com
Matthew McVicar

mailto:j.alwyn@elsevier.com
http://www.elsevier.com/artworkinstructions

ARTICLE IN PRESS
JID: PATREC [m5G; May 11, 2016;9:49]

Highlights
• A new distance measure for comparing rooted, unordered, uniquely-labelled trees. • A quadratic time algorithm in the number of input
nodes for computing this distance. • A case study demonstrating this measure between music genre taxonomies.

ARTICLE IN PRESS
JID: PATREC [m5G; May 11, 2016;9:49]

Pattern Recognition Letters xxx (2016) xxx–xxx
Contents lists available at ScienceDirect

Pattern Recognition Letters
journal homepage: www.elsevier.com/locate/patrec

SuMoTED: An intuitive edit distance between rooted unordered
uniquely-lab elle d trees ✩
Matt McVicar a , ∗, Benjamin Sach b , Cédric Mesnage a , Jefrey Lijffijt a , c , Eirini Spyropoulou a , Q1
Tijl De Bie a , c
a Department of Engineering Mathematics, University of Bristol, Woodland Road, Bristol BS81UB, England
b Department of Computer Science, University of Bristol, Woodland Road, Bristol BS81UB, England
c Data Science Lab, Ghent University, Technicum, Ghent 90 0 0, Belgium

Q2

a r t i c l e i n f o
Article history:
Received 10 November 2015
Available online xxx
Keywords:
Tree e dit d istance
Taxonomies

a b s t r a c t
Defining and computing distances between tree structures is a classical area of study in theoretical com-
puter science, with practical applications in the areas of computational biology, information retrieval, text
analysis, and many others. In this paper, we focus on rooted, unordered, uniquely-labelled trees such as
taxonomies and other hierarchies. For trees as these, we introduce the intuitive concept of a ‘local move’
operation as an atomic edit of a tree. We then introduce SuMoTED, a new edit distance measure between
such trees, defined as the minimal number of local moves required to convert one tree into another. We
show how SuMoTED can be computed using a scalable algorithm with quadratic time complexity. Finally,
we demonstrate its use on a collection of music genre taxonomies.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction 1
The problem of computing how (dis)similar two trees are, and 2

the related problem of computing a consensus between a set of 3
trees, has applications in computational biology, chemistry, music 4
genre analysis, and automatic theorem-proving [14,18,23,25] . For 5
example, calculating the distance between RNA secondary struc- 6
tures (which have a tree structure) is necessary to understand 7
their comparative functionality [26] . Taxonomies, such as the one 8
shown in Fig. 1 , offer another natural application area. Indeed, 9
quantifying the similarity between different taxonomies may pro- 10
vide insight into what might be the consensus as well as the 11
nature of any subjective differences between different taxonomy 12
creators. 13

Given the wide range of application areas listed above, it is not 14
surprising that computing the similarity between trees is an ac- 15
tively studied problem within computer science, and the literature 16
is abundant with similarity measures for various types of trees. 17
However, computational tractability is often a problem. For exam- 18
ple, for rooted, unordered, fully-labelled trees (trees with a root, in 19
which every vertex is labelled and the left-to-right order of siblings 20

✩ This paper has been recommended for acceptance by Dr. D. Coeurjolly.
∗ Corresponding author . Tel.: +44 7739901492.

E-mail address: mattjamesmcvicar@gmail.com (M. McVicar).

carries no significance, such as taxonomies and other hierarchies), 21
a recent survey [5] discusses three distances that are all NP-hard. 22
More details are presented in Section 2 . 23

The current paper aims to tackle this problem in a specific 24
setting by introducing the Subtree Moving Tree Edit Distance 25
(SuMoTED): a new tree distance measure with several appealing 26
properties. First, it is an edit distance, defined intuitively as the 27
minimum number of atomic local moves of vertices up and down 28
required to turn one tree into the other, weighted by the size of 29
the moved subtree. Second, it is not only intuitive but is also a 30
metric distance, meaning it is easy to use in a wide range of in- 31
formation retrieval and machine learning algorithms. For example, 32
distance-based methods for clustering often require the distance 33
measure to be metric, and metric properties are also used for ef- 34
ficient document retrieval in databases. Third, it can be computed 35
in a time that is quadratic in the total number of vertices in the 36
trees. Finally, our method produces a consensus tree as part of the 37
procedure, allowing us to compute the agreement between a set of 38
trees at no additional cost. 39

We begin this paper with a literature survey on tree distances 40
in Section 2 . Subsequently, we define SuMoTED as a novel dis- 41
tance measure between two rooted, unordered, uniquely-labelled 42
trees (Section 3). We then give an efficient algorithm for its com- 43
putation (Section 4), before evaluating SuMoTED experimentally in 44
Section 5 and concluding in Section 6 . 45

http://dx.doi.org/10.1016/j.patrec.2016.04.012
0167-8655/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Please cite this article as: M. McVicar et al., SuMoTED: An intuitive edit distance between rooted unordered uniquely-labelled trees,
Pattern Recognition Letters (2016), http://dx.doi.org/10.1016/j.patrec.2016.04.012

http://dx.doi.org/10.1016/j.patrec.2016.04.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://creativecommons.org/licenses/by/4.0/
mailto:mattjamesmcvicar@gmail.com
http://dx.doi.org/10.1016/j.patrec.2016.04.012
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.patrec.2016.04.012

2 M. McVicar et al. / Pattern Recognition Letters xxx (2016) xxx–xxx
ARTICLE IN PRESS

JID: PATREC [m5G; May 11, 2016;9:49]

Music

Classical String Quartet

Orchestra

Classical
Piano

Choir

Country

Disco

HipHop

Jazz BigBand

Jazz Quartet

Fusion

Jazz
Piano

Cool

Swing

Rock

Blues

Reggae

Pop

Metal

Fig. 1. Music genre hierarchy proposed by Tzanetakis and Cook [25] .
2. Related work 46
2.1. Distances between trees 47

The task of defining and computing distances between trees 48
can be considered a special case of the graph comparison prob- 49
lem, which has an extensive literature: see Gao et al. [13] for a 50
summary. When the graphs are directed and contain no cycles, the 51
graph becomes a Directed Acyclic Graph (DAG)—some authors have 52
studied the distances between DAGs [6,16] . Most graph and DAG 53
distances could ofcourse be deployed for trees. Despite this, often 54
the particular structure of trees such as the notion of a root, the 55
unique parent of a vertex, or sibling relationships, are important 56
in designing meaningful tree distance measures, such that mea- 57
sures for graphs become unnatural when applied to trees. 1 For 58
this reason, defining tree distances has become and active research 59
topic. Bille [5] offers a comprehensive overview of the most com- 60
mon methods for comparing trees, including best-known time and 61
space complexity bounds. Here we give only an overview, referring 62
the reader to Bille for further details. 63

The first and most widely-used method for comparing trees is 64
the tree edit distance , introduced by Tai [24] as an extension of the 65
well-known string edit distance. Tai allows insertion, deletion and 66
substitution of vertices in order to convert a source tree T s into a 67
target tree T t . A cost function is then applied to these operations 68
(most commonly setting the cost of each transformation to unity), 69
and the minimum number of these operations is defined to be the 70
distance between T s and T t . Several algorithms have been proposed 71
to efficiently solve the tree edit distance, but only on ordered trees 72
or other special cases. The case for unordered trees is known to be 73
NP-hard [5] . In the original formulation of the tree edit distance, 74
inserting a vertex u between a vertex v and its parent p meant that 75
u became a child of p , and v and all of its descendants became a 76
child of u . Restrictions were also introduced such as the top-down 77
distance [21] which only allowed insertions to occur at leaves. An- 78
other modification is the bottom-up distance: let the number of 79
nodes in the source and target tree be n s and n t and the size of 80
the largest common forest of T s and T t be f . The distance between 81
T s and T t is then defined to be 1 − f/ max (n s , n t) . The best known 82

1 This is particularly true for edit distances: edit operations for graphs could cre-
ate loops in a tree, which would lead to problems in interpretability.

algorithm for the bottom-up problem is linear in n s and n t , and is 83
applicable to both ordered and unordered trees. 84

Tree alignment is an alternative method and proceeds as follows. 85
Nodes with no labels are inserted into T s and T t until they are iso- 86
morphic 2 , producing T ′ s and T ′ t . This produces an alignment tree 87
A , whose vertex labels are pairs of labels taken from T ′ s and T ′ t . 88
The cost of A is the total cost of substituting each vertex pair such 89
that they are equal—the tree alignment distance between T s and 90
T t is the minimum such cost. Finally, the tree inclusion problem is 91
to determine if T t may be obtained from T s via deleting nodes. As 92
with the tree edit distance for unordered trees, computing either 93
the tree alignment distance or the tree inclusion problem is MAX 94
SNP-hard [5] . 95
2.2. Computing c onsensus t rees 96

Given a set of trees, a distinct but clearly related task to the 97
tree distance problem is to determine what information is shared 98
by the set. Shasha et al. [22] claims there are five commonly- 99
used methods for achieving this, which we review here. The first 100
was introduced by Adams III [1] and is known as the Adams con- 101
sensus in the literature. This method is applicable to both fully- 102
labelled and leaf-labelled trees (where only leaf vertices have la- 103
bels). Leaf-labelled trees are more common in taxonomic biological 104
applications. Next, Day [11] proposed a new method for comput- 105
ing the consensus, and also introduced a distance measure based 106
on the number of common subtrees found within two trees in the 107
collection—this method is known as the strict consensus . 108

Margush and McMorris [17] pointed out that in the case that 109
many of the trees in a large set are identical (say, equal to T) and 110
one differs from T by a single edge, that the consensus should be 111
equal to T . To achieve this, he introduced the majority rule con- 112
sensus , where a parent –child relationship in the consensus is only 113
introduced if at least half the trees share the same link. The semi- 114
strict consensus tree for leaf-labelled trees [7] includes all subtrees 115
by Adams’ method, but also any subtrees which are not contra- 116
dicted by other members of the group. Finally, the Nelson consen- 117
sus [20] consists of the set of mutually compatible subtrees that 118
are most frequently replicated in the group. 119

Interestingly, the computation of a con s ensus tree can be con- 120
sidered a special case of frequent subtree mining, an area of re- 121
search which has received a good deal of attention in recent years 122
[4,8,9] . 123
2.3. Limitations of existing work 124

As seen above there are many existing methods which either 125
compute the distance between trees, or compute a consensus be- 126
tween a set of trees. Yet, all existing distance measures suffer from 127
one of both of the following problems: 128

Computational cost We are interested in the case of uniquely- 129
labelled unordered trees as these occur frequently in application 130
areas (such as biological sequence analysis, text mining and mu- 131
sic information retrieval). Although, to the best of our knowledge, 132
this specific case has not been studied, for general unordered la- 133
belled trees the three existing distances discussed above (tree edit 134
distance, alignment distance and tree inclusion) are not efficiently 135
computable. 136

Interpretability The top-down and bottom-up distances, which 137
can be computed efficiently, are defined in terms of disruptive edit 138
operations that may occur at any point in the tree, irrespective of 139
the depth of the vertex they occur on. We find this unsatisfactory, 140

2 T 1 and T 2 are isomorphic if there exists a tree isomorphism between them: a
bijection of the nodes which preserves the edges and maps the root of T 1 to the
root of T 2 .

Please cite this article as: M. McVicar et al., SuMoTED: An intuitive edit distance between rooted unordered uniquely-labelled trees,
Pattern Recognition Letters (2016), http://dx.doi.org/10.1016/j.patrec.2016.04.012

http://dx.doi.org/10.1016/j.patrec.2016.04.012

M. McVicar et al. / Pattern Recognition Letters xxx (2016) xxx–xxx 3
ARTICLE IN PRESS

JID: PATREC [m5G; May 11, 2016;9:49]
especially for applications related to taxonomies, where, for exam- 141
ple, substituting/deleting a child of the root has a dramatic effect 142
on the taxonomy, while that is not accounted for in the measure. 143

As noted above, there exist efficient methods for computing the 144
consensus between sets of trees. We discovered during the devel- 145
opment of our own algorithm however that it produces a consen- 146
sus tree as a natural part of the procedure, which is equivalent to 147
the strict consensus. 148
3. SuMoTED — Subtree Moving Tree Edit Distance 149

This section introduces the first main contribution of the paper: 150
a novel distance measure between trees, named SuMoTED (Subtree 151
Moving Tree Edit Distance). For the sake of mathematical rigour, 152
we formalise this distance in terms of vertex-labelled graphs and 153
supply all main proofs. The high-level concept however may be un- 154
derstood by defining a local move on a tree as a small ‘re-wiring’ 155
of the edge connecting a vertex to its parent. The set of all possi- 156
ble local moves from a source tree then forms an extremely large 157
graph, with the edit distance being the shortest path from source 158
to target tree over this graph. We begin by introducing some nota- 159
tion and basic definitions. 160

Throughout, T (V , E , R) will represent a tree with directed edges 161
(v , w) ∈ E ⊆ V × V over a set of vertices V , and root R ∈ V . We de- 162
note the set of all possible trees with a given vertex set V and root 163
R as T V,R . We will also use T and T for brevity when V , E , R are 164
clear from the context. Note that |T V,R | = n n −2 with n = | V | (Ca- 165
ley’s number, [15]). To simplify notation we also define the parent 166
function of a vertex: 167
Definition 1 (Parent function) . The parent function of a tree T (V , 168
E , R) on a vertex v , denoted Pa T (v) is defined as Pa T (v) = w ⇔ 169
(w, v) ∈ E. 170

We also define a particular type of tree in which each vertex is 171
the child of the root, known as the bush over V with root R . 172
Definition 2 (Bush) . A tree T (V , E , R) is called the bush over V 173
with root R , denoted B (V , R) if the edge set E is such that E = 174
{ (R, v) | v ∈ V \ { R }} . 175
3.1. Tree e dit d istances 176

This subsection introduces our proposed method for computing 177
the edit distance between trees 3 . Quantifying the distance between 178
arbitrary trees T , T ′ ∈ T directly is challenging. However, for cer- 179
tain pairs of extremely similar trees, such a quantification is often 180
intuitive—for example, if there is exactly one edge which differs. 181
Denoting the set of (ordered) tree pairs (T , T ′) between which this 182
distance can be quantified as E, and the corresponding distance as 183
the output of a real-valued weight function W (T , T ′), we can define 184
a weighted directed graph over the set of all trees T , which we 185
call an edit graph : 186
Definition 3 (Edit graph, local tree edit) . Let E ⊆ T × T represent 187
a set of ordered tree pairs, with a positive and finite real-valued 188
weight function W : E → R + mapping each pair (T , T ′) ∈ E onto a 189
weight W (T , T ′). Then, the weighted graph G (T , E, W) will be re- 190
ferred to as the edit graph . The operation of changing a tree T into 191
a neighbo u r of this tree in the edit graph, will be referred to as a 192
local tree edit applied to T . 193

Clearly, to construct this graph, weights representing distances 194
need to be specified only for the pairs of nearby trees in E . Yet, it 195

3 Note that Tai [24] coined their method tree edit distance . In this paper we use
this term to refer to a class of methods that quantify the distance between trees in
terms of edit operations, rather than this specific method .

allows one to define a distance d (T , T ′) for any pair of trees (T , T ′) 196
as the tree edit distance —the weight of the shortest path between 197
the vertices representing T and T ′ in the edit graph: 198
Definition 4 (Tree edit distance) . Given an edit graph G (T , E, W) 199
over all trees T , the tree edit distance d : T × T → R between T 200
and T ′ is defined by: 201
d(T , T ′) = min

n,T 0 ,T 1 , ... ,T n
n ∑

i =1 W (T i −1 , T i) ,
s.t. n ∈ Z + , (T i −1 , T i) ∈ E ∀ i, T 0 = T , T n = T ′ ,
if this problem is feasible, and ∞ otherwise. 202

Criteria for a good edit graph. The challenge in defining a good 203
tree edit distance is twofold: deciding which trees are not too dis- 204
tant (which amounts to specifying E), and deciding how distant 205
precisely these trees are (specifying W). Intuitively, we wish the 206
edit graph to satisfy the following two criteria: 207
1. Symmetry: if (T , T ′) ∈ E, then also (T ′ , T) ∈ E, and W (T , T ′) = 208

W (T ′ , T) . 209
2. Connectedness: all T , T ′ ∈ T are connected by a path in the edit 210

graph. This means that the distance between any pair of trees 211
is finite: d (T , T ′) < ∞ , ∀ T , T ′ ∈ T . 212
Properties of tree edit distances Any tree edit distance d , sat- 213

isfying symmetry and connectivity has two appealing properties: 214
Proposition 1. d is a distance metric over the set of trees T . 215
Proof. Non-negativity and identity of indiscernibles follow from 216
the definition. Symmetry follows from the symmetricity of the edit 217
graph. Finally, the triangle inequality follows directly from the fact 218
that for any T , T ′ , T ′′ ∈ T , the shortest path between T and T ′ ′ is 219
at most as long as the sum of the distances of the shortest paths 220
between T and T ′ , and T ′ and T ′ ′ ! 221

This proposition has an important immediate corollary regard- 222
ing bushes which we will later rely on: 223
Corollary 1. For any T , T ′ ∈ T V,R : 224
d(T , T ′) ≤ d(T , B (V, R)) + d(T ′ , B (V, R)) .
Proof. From symmetricity and the triangle inequality on d . ! 225

In Subsection 3.2 and 3.3 we discuss how the criteria of sym- 226
metricity and connectedness of the edit graph can be reali s ed. Note 227
that for simplicity in these sections we assume the label sets of 228
the source and tree are identical—this assumption will be relaxed 229
in Subsection 3.5 . 230
3.2. Local m oves as t ree e dits 231

We will now define the set of edges E of the edit graph in 232
terms of a tree operation we refer to as a local move , which 233
amounts to deleting the edge between a vertex and its parent, and 234
adding an edge between either the edge’s grandparent, or one of 235
its siblings: 236
Definition 5 (Local move) . A local move on a tree T (V , E , R) is 237
an operation that changes it into a tree T ′ (V , E ′ , R) with E ′ = (E \ 238
{ (Pa T (v) , v) }) ∪ { (w, v) } where w is either Pa T (Pa T (v)) —the grand- 239
parent of v —or w is a sibling of v . A local move is called upward 240
when w is Pa T (Pa T (v)) , and downward otherwise. 241

Local upward and downward moves are illustrated in Fig. 2 . Lo- 242
cal moves satisfy both our desired criteria: 243
Proposition 2. With local moves as edits, and a weight function 244
which assigns equal weights to upward and downward moves, the edit 245
graph G (T , E, W) is symmetric. 246

Please cite this article as: M. McVicar et al., SuMoTED: An intuitive edit distance between rooted unordered uniquely-labelled trees,
Pattern Recognition Letters (2016), http://dx.doi.org/10.1016/j.patrec.2016.04.012

http://dx.doi.org/10.1016/j.patrec.2016.04.012

4 M. McVicar et al. / Pattern Recognition Letters xxx (2016) xxx–xxx
ARTICLE IN PRESS

JID: PATREC [m5G; May 11, 2016;9:49]

a b c

Fig. 2. Local move operations on vertex F . In (a), the vertex F and all its descen-
dants (the triangle) are moved from being a child of B to be a child of A (F’s grand-
parent). (b): F and its descendants become a child of one of F’s siblings, D. Finally,
in (c), F moves to be a child of its other sibling E.
Proof. After a local upward move, the parent of the child vertex 247
becomes its sibling. Thus, this type of move can be undone by 248
rewiring the affected edge to a sibling. Similarly, after a down- 249
ward move, the parent of the child vertex becomes its grandpar- 250
ent. Thus, this local move can be undone by rewiring the rewired 251
edge to its grandparent. Since the costs of moves are equal, both 252
operations have equal cost and G is therefore symmetric. !253
Proposition 3. With local moves as edits, the edit graph G (T , E, W) 254
is connected. 255
Proof. Any tree T (V , E , R) is connected to the bush B (V , R). Indeed, 256
an upward move on a tree decreases the sum of the depths of the 257
vertices in the tree by an amount of at least 1. Furthermore, any 258
tree that is not a bush will have a vertex to which an upward move 259
can be applied. Thus, we can successively apply upward moves to T 260
and be sure that eventually the bush B (V , R) will be reached. From 261
the symmetry of the edit graph, this also implies that any tree can 262
be reached from the bush by a sequence of downward moves. Put 263
together, there exists a path between any arbitrary pair of trees 264
T (V , E , R) and T ′ (V , E ′ , R), namely one that passes via the bush 265
B (V , R). !266
3.3. The w eight f unction for l ocal m oves 267

Having defined the set of edges E of the edit graph as those 268
between any pair of trees that are separated by one local move , 269
we now need to define the weight function W (T , T ′) of such an 270
edge. A simple approach would be to set W (T , T ′) = 1 for any pair 271
(T , T ′) ∈ E . However, note that a local move allows for arbitrarily 272
large groups of vertices to move up or down the tree quickly and 273
cheaply. For example, in Fig. 2 (a), we see that all the descendants 274
of F have been moved up to be children of the root vertex at no 275
extra cost. To account for the varying number of vertices that are 276
affected, we therefore define the weight function as the total size 277
of the subtree with root v . This means that the weight is equal to 1 278

in the case where v is a leaf, and equal to 1 more than the number 279
of descendants of v in general. 280
3.4. A normalised similarity measure 281

A weakness of our proposed measure is that it will tend to 282
be larger for larger | V |, such that distances between pairs of trees 283
of different sizes are hard to compare. Recall that two trees can 284
always be reached using local moves which passes through the 285
bush—this is therefore an upper bound on the distance between 286
two trees. In order to be able to compare scores of trees of differ- 287
ent sizes, we propose a normali s ation scheme in which we divide 288
the distance between two trees d (T , T ′) by the sum of the distances 289
from T , T ′ to the bushes: d(T , B (V, R)) + d(T ′ , B (V, R)) . Often it is 290
also more convenient to use similarity measures, so we define the 291
normali s ed similarity between T , T ′ ∈ T V,R as: 292
s (T , T ′) = 1 − d(T , T ′)

d(T , B (V, R)) + d(T ′ , B (V, R)) ∈ [0 , 1] (1)
3.5. An extension to trees with different label sets 293

So far, we have assumed that the trees we compare are label- 294
set consistent (meaning that the number of vertices and number 295
of labels coincide). When T ∈ T V,R and T ∈ T V ′ ,R with V ̸ = V ′ , we 296
generali s e the tree edit distance metric d as follows: Add each 297
vertex v ∈ V \ V ′ as a direct child of the root R in T , yielding 298
T + ∈ T (V ∪ V ′ , R) . Similarly, add each vertex v ∈ V ′ \ V as a direct 299
child to the root R in T ′ , yielding T ′ + ∈ T (V ∪ V ′ , R) . We then de- 300
fine the distance d (T , T ′) as d(T + , T ′ +) . Placing ‘unseen’ vertices as 301
children of the root is conducted as we have no prior information 302
on any better position to place them. Note that if we consider this 303
step to be preprocessing, the (un-normalised) distance maintains 304
its metric property. An example of the optimal set of operations 305
to convert a source tree into a target tree (as well as to the nor- 306
mali s ing bush) is shown in Fig. 3 , and is also available animated in- 307
teractively online at http://www.interesting-patterns.net/ds4dems/ 308
sumoted-demo/ . Python code to compute SuMoTED is available on- 309
line 4 . 310
4. An efficient algorithm to compute SuMoTED 311

Computing SuMoTED amounts to finding the shortest path from 312
the source tree to the target tree (T , T ′) ∈ E in the edit graph 313
G (T , E, W) . Effective algorithms (polynomial complexity in number 314
of vertices and edges) for computing the shortest path between a 315
given pair of vertices in a graph exist [10] . However, the graph in 316
our case is far too large for such an approach to be feasible (re- 317
call from earlier: |T V,r | = | V | | V |−2). Remarkably, we have discovered 318
a fast algorithm for computing SuMoTED between any pair of trees 319
that is polynomial (quadratic) in the size of the trees , rather than in 320
the size of the edit graph. The current section outlines this algo- 321
rithm, which is based on the following theorem: 322
Theorem 1. Given trees T , T ′ ∈ T , the shortest path in the edit graph 323
between T and T ′ is equally as long as the shortest path that consists 324
of a sequence of local upward moves, followed by a sequence of local 325
downward moves. 326

The proof of the theorem rests on the following Lemma: 327
Lemma 1. Let (T 0 , . . . , T n) be a shortest path of trees between T 0 and 328
T n . Assume that there exists 0 < i < n such that T i is reached from 329
T i −1 by a downward move, and T i +1 is reached from T i by an upward 330
move. Then it is always possible to replace the subpath (T i −1 , T i , T i +1) 331

4 https://github.com/mattmcvicar/SuMoTED
Please cite this article as: M. McVicar et al., SuMoTED: An intuitive edit distance between rooted unordered uniquely-labelled trees,
Pattern Recognition Letters (2016), http://dx.doi.org/10.1016/j.patrec.2016.04.012

http://www.interesting-patterns.net/ds4dems/sumoted-demo/
https://github.com/mattmcvicar/SuMoTED
http://dx.doi.org/10.1016/j.patrec.2016.04.012

M. McVicar et al. / Pattern Recognition Letters xxx (2016) xxx–xxx 5
ARTICLE IN PRESS

JID: PATREC [m5G; May 11, 2016;9:49]

Fig. 3. Example of our proposed edit distance d (T , T ′). Intermediate trees are shown between blue arrows, together with the cost of edit. The severed edge for each tree in Q3
the bottom row are shown as dashed arrows. This (optimal) overall path has length 3 + 1 + 2 + 1 + 1 + 1 = 9 , normalised similarity 1 − (9 / (9 + 4)) ≈ 0 . 31 . The consensus
DAG is shown in the top-right, from which we have generated the tree using solid arrows. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).
for another subpath between T i −1 and T i +1 of equal cost that consists 332
of a sequence of upward moves followed by a sequence of downward 333
moves. 334
Proof. Let (Pa T i −1 (v) , v) be the edge involved in the downward 335
move on T i −1 , and (Pa T i (w) , w) the edge involved in the upward 336
move on T i . These moves can simply be swapped without alter- 337
ing the resulting tree T i +1 and the total cost, as long as Pa T i −1 (v) ̸ = 338
P a T i (w) . When P a T i −1 (v) = Pa T i (w) , on the other hand, the two 339
moves can be replaced with two upward moves followed by one 340
downward move. Referring to Pa T i −1 (v) = Pa T i (w) as u , and to the 341
parent of u (in T i −1 , T i , as well as T i +1) as z , these moves should 342
be: 343
1. An upward move of edge (u, v) , replacing (u, v) with (z, v) . 344
2. An upward move of edge (u, w) , replacing (u, w) with (z, w) . 345
3. A downward move of edge (z, v) , replacing (z, v) with (w, v) . 346

It is easy to verify that these three moves have the same cost 347
as the total cost of the original downward and upward moves. !348
Proof of Theorem 1. Given any optimal path, iteratively apply 349
Lemma 1 until no more downward moves can be found that are 350
followed by an upward move. !351

Theorem 1 implies that the edit distance d (T , T ′) can be ex- 352
pressed in terms of a consensus tree T c : 353
Definition 6 (Consensus tree) . A consensus tree for two trees 354
T , T ′ ∈ T is a tree T c ∈ T that can be reached from T as well as 355
from T ′ using local upward moves only. 356

By symmetry, Theorem 1 can be rephrased as saying: a shortest 357
path from T to T ′ exists in the edit graph that consists of upward 358
moves to T c , followed by downward moves to T ′ . Theorem 2 shows 359
that the distance between T and T c which can be reached using 360
upward moves only from T depends only on T , T c : 361
Theorem 2. Define a partial order between all vertices in a given tree 362
T as follows: 5 363
P T = { (v , w) | w is a descendant of v in T } ,

5 P T can equivalently be defined as the reflexive transitive closure of the edge set
E for a tree T(V , E , R) .

where we consider v to be a trivial descendant of itself. The to- 364
tal distance of any path (T 0 , . . . , T c) in the edit graph for which T i 365
is reached by a local upward move from T i −1 for all i , is given by 366
d(T 0 , T c) = | P T 0 | − | P T c | . 367
Proof. When an upward move on vertex v is applied to T i to yield 368
T i +1 , the number of pairs removed from P T i is equal to the size of 369
the subtree rooted at v . Indeed, the only change is that all descen- 370
dants of v (including v itself) no longer have Pa T i (v) as an ances- 371
tor. Thus, d(T i , T i +1) = | P T i | − | P T i +1 | . For a sequence of local upward 372
moves (T 0 , T 1 , . . . , T c) , this means that the total path length in the 373
edit graph is ∑ c

i =1 d(T i −1 , T i) = ∑ c
i =1 | P T i −1 | − | P T i | = | P T 0 | − | P T c | . ! 374

The following is a direct consequence of the definition of 375
SuMoTED and the previous theorem: 376
Corollary 2. Given T , T ′ ∈ T : d(T , T ′) = min T c | P T | + | P T ′ | − 2 | P T c | , 377
subject to T c being a consensus tree. 378

Thus, to compute the d (T , T ′), all that is needed is to compute 379
the size of the largest partial order P T c over all consensus trees T c 380
for T and T ′ . Clearly, P T c ⊆ P T ∩ P T ′ , and when the Hasse diagram 381
[3] of P T ∩ P T ′ is a tree, the optimal P T c = P T ∩ P T ′ . However, in gen- 382
eral, the Hasse diagram of P T ∩ P T ′ is a DAG. The task of maximizing 383
| P T c | then amounts to finding a subtree of this DAG representing 384
the largest possible partial order. This optimal consensus tree can 385
be found via a layer-assignment algorithm known as the Longest 386
Path Algorithm , which has linear time complexity [19] . Briefly, given 387
P T ∩ P T ′ this algorithm proceeds as follows: 388
• Initialise T c (V c , E c , r) with V c = { r} , E c = {} . 389
• Iterate: For each vertex v for which all w with (w, v) ∈ P T ∩ P T ′ 390

are in T c , identify the deepest such vertex w in T c , and insert v 391
into V c and (w, v) into E c . 392
This algorithm ensures that each vertex is maximally deep in 393

the tree, such that the transitive closure of the tree is as large as 394
possible. The detailed proof works by induction: It is true for the 395
root, and given that it is true for a partial tree already built, it is 396
also true for the new vertices and edges added in each iteration. It 397
can be verified that the overall computational complexity of com- 398
puting SuMoTED for T , T ′ ∈ T V,r is O (| V | 2). 399

Please cite this article as: M. McVicar et al., SuMoTED: An intuitive edit distance between rooted unordered uniquely-labelled trees,
Pattern Recognition Letters (2016), http://dx.doi.org/10.1016/j.patrec.2016.04.012

http://dx.doi.org/10.1016/j.patrec.2016.04.012

6 M. McVicar et al. / Pattern Recognition Letters xxx (2016) xxx–xxx
ARTICLE IN PRESS

JID: PATREC [m5G; May 11, 2016;9:49]

Fig. 4. Edit cost (below diagonal) and normali s ed similarity (above diagonal) be-
tween the ground truth Deezer taxonomy and annotators (A 1 –A 6) and for the
Ground Truth. Right: for the ReverbNation dataset.
5. Experiments 400

In this section we conduct a case study, applying SuMoTED to 401
three hierarchical datasets which describe popular music genres. 402
The genre of a song is a high-level musical attribute frequently 403
used for music organisation, playlisting, searching, and recommen- 404
dation. Often, songs are tagged with a set of labels which are hier- 405
archically arranged into a musical genre taxonomy. Unfortunately, 406
different musical experts and professional music services use very 407
different sets of genre labels in their categorisation schemes. Even 408
when these label sets overlap, they are often structured differently 409
which complicates their use for the applications listed above. To 410
investigate how SuMoTED could be used to analyse these kinds of 411
data, we experimented with three datasets: a small dataset where 412
the “true” hierarchy is known (5.1) , a medium-size dataset with 413
no existing ground truth (5.2) , and a large-scale dataset consisting 414
of commercially-used music genre hierarchies where the label sets 415
do not coincide (5.3) . Finally, we investigate the scalability of our 416
method in 5.4 . 417
5.1. Deezer dataset 418

The music genre taxonomy used by the web-based music 419
streaming service Deezer was used in these experiments, featur- 420
ing n = 101 genres. We asked 6 annotators (referred to as A 1 –A 6 421
hereafter) to construct a taxonomy from these genres without con- 422
sulting the reference annotation or each other. We then computed 423
the SuMoTED (via cor ollary 2) and normalised similarity (Eq. 1) be- 424
tween each pair of annotations. Results can be seen on the left 425
of Fig. 4 . From this Figure, we see that the normali s ed similarities 426
are all equal to unity when the taxonomies are equal (diagonal en- 427
tries), as expected. We see that annotator A 4 was the closest to 428
the Deezer reference (normalised similarity 0.72), and that annota- 429
tors A 2 and A 5 were the most similar to each other (0.75). Annota- 430
tor A 5 has the highest mean similarity to other taxonomies (0.66), 431
meaning A 5 could be considered the ‘centre of mass’ of the set of 432
references. We were also interested in the overlap between anno- 433
tations, so we computed the Hasse diagram of the intersection of 434
all annotations in Fig. 5 . Interestingly, this Figure shows that there 435
was no consensus as to placement of rock and its descendants in 436
the taxonomy. For example, A 2 listed alternative as a child of rock , 437
whereas in the Deezer reference this relationship was reversed. 438
5.2. ReverbNation dataset 439

From an existing project, we had 251 unique genre labels stored 440
from a set of over 50, 0 0 0 independent UK music artists from 441
ReverbNation.com . As before, A 1 –A 6 were asked to make a taxon- 442
omy from this larger dataset. The annotator similarities are shown 443
in the right matrix of Fig. 4 . From this matrix, we see that simi- 4 4 4

Fig. 5. Hasse diagram for the intersection of the Deezer taxonomies. Genres which
were found to be a child of Music with no further children in common are omitted
for brevity.
Table 1
Comparison of existing taxonomies used in industry. Above diagonal entries show
normali s ed distance, below show Jaccard index.

Normali s ed similarity
A(allmusic) D(eezer) iT(unes) W(iki)

Jaccard A – 0.01 0.05 0.07
D 0.04 – 0.12 0.01
iT 0.16 0.16 – 0.06
W 0.15 0.03 0.10 –

larities are generally lower—we found that this was a result of the 445
increased depth of some of the taxonomies specified in the Reverb- 446
Nation dataset. For example, A 4 had one vertex of depth 6: Music 447
→ electronic → edm → uk → dnb → breakbeat → breakcore —two 448
levels deeper than any vertex in 5.1 . Interestingly, in both sets of 449
experiments A 2 and A 5 had the highest similarity, followed by A 4 450
and A 5. 451
5.3. Commercial datasets 452

We sourced four genre hierarchies for use in these experi- 453
ments: the Deezer dataset used above (n = 101 genres), Allmusic 454
(n = 1 062), iTunes (340), and Wikipedia (730). As the label sets of 455
these taxonomies did not coincide, we computed the Jaccard sim- 456
ilarity of the label sets to investigate how similar they were. See 457
Table 1 for these results. We see from this Table that the similari- 458
ties between taxonomies (below-diagonal) are low in magnitude. 459
These values highlight and quantify the huge discrepancies be- 460
tween the choice of genre labels companies use when constructing 461
a taxonomy. Above-diagonal entries are also close to 0.0, indicat- 462
ing that there is little similarity between industrially-used music 463
genre hierarchies—something speculated about in previous work 464
[2] but never quantified. Given that these similarities were close 465
to zero, we wondered if they were significantly larger than ran- 466
dom. To assess this, we conducted a permutation test : for each tree 467
we generated a number of trees with identical topology but ran- 468
domly permuted labels. For given similarity between ‘true’ trees S , 469
an empirical p - value was then computed: 470
ˆ p = | permuted trees with similarity ≥ S| + 1

| permuted trees | + 1
However, in all our experiments (Subsection 5.1 –5.3), we never 471
found a random tree pair with similarity greater than or equal to 472

Please cite this article as: M. McVicar et al., SuMoTED: An intuitive edit distance between rooted unordered uniquely-labelled trees,
Pattern Recognition Letters (2016), http://dx.doi.org/10.1016/j.patrec.2016.04.012

http://ReverbNation.com
http://dx.doi.org/10.1016/j.patrec.2016.04.012

M. McVicar et al. / Pattern Recognition Letters xxx (2016) xxx–xxx 7
ARTICLE IN PRESS

JID: PATREC [m5G; May 11, 2016;9:49]

Fig. 6. Scalability of our algorithm in practice. 10 Random trees with n (horizon-
tal axis) nodes were created and their average distance computation time (vertical
axis) was measured.
the true tree pairs, for 99 randomly-generated trees. Results were 473
in fact generally around 3 orders of magnitude lower. This resulted 474
in empirical p - values of 0.01 and indicates that all the similari- 475
ties we computed were significantly more self-similar than random 476
taxonomies at the 1% level. 477
5.4. Scalability experiments 478

We were interested in seeing how our algorithm scales with 479
input size. To this end, we computed the time required to compute 480
the distance between several random trees with a fixed number of 481
nodes. Random trees with n nodes labelled { 1 , . . . , n } with fixed 482
root 1 were created as follows: labels 2 , . . . , n were first randomly 483
permuted, and then attached to one of the existing nodes in the 484
tree until all labels were exhausted. 485

We created 10 trees for each n using the above procedure, com- 486
puted their pairwise distance, and recorded their average compu- 487
tation time. Experiments were conducted in the Python program- 488
ming language on a laptop with 2.6 GHz Intel Core i5 processor 489
and 8GB 1600 MHz DDR3 memory running OSX El Capitan 10.11.2. 490
Results can be seen in Fig. 6 . From this Figure, we see that our 491
method scales reasonably well to large tree sizes. We can com- 492
pute the distance between two trees with 1 0 0 0 nodes (consistent 493
with industrial datasets) comfortably in under 1 min . The quadratic 494
trend seen in the Figure is consistent with the theoretical result 495
presented in Section 4 . The code was implemented in the most 496
intuitive way possible, with no particular optimisation for data 497
structures or subroutines—further improvements in time complex- 498
ity may therefore improve the results seen in Fig. 6 . Recall that the 499
implementation is available online. 500
6. Conclusions and future work 501

We have presented a novel distance between trees, called 502
SuMoTED, defined as an edit distance via local moves . SuMoTED 503

has several appealing properties: it is a metric distance in the un- 504
normalised setting, is computable in quadratic time, and is appli- 505
cable to trees with different label sets. As a case study, we used 506
this distance metric to investigate the consistency between anno- 507
tators and existing music genre taxonomies, finding high similarity 508
between human-generated taxonomies in the case of small label 509
sets. We were also able to construct consensus annotations using 510
our method, which gave musical insight into agreed-upon hierar- 511
chical genre relationships amongst annotators. Besides the study 512
of commonalities and differences between various trees (such as 513
taxonomies), SuMoTED is ideally suited for more advanced analy- 514
ses such as clustering trees. Furthermore, it can be used to quan- 515
tify the performance of methods designed for inferring taxonomies 516
from data. 517

We focu s sed on music genre taxonomies in the current paper, 518
but are excited by the prospect of using our method to compute 519
taxonomy similarities in some of the domains listed in the intro- 520
duction of this paper. For example, we could use SuMoTED to in- 521
vestigate the similarities between biological or textual trees. A fur- 522
ther idea for future research is the investigation of information cas- 523
cades [12] , where trees are formed by information flowing through 524
a network. Also, we would like to investigate if our method can be 525
used to construct and evaluate methods which infer a taxonomy 526
from data, as this could be useful is assessing how reliable such a 527
taxonomy is. Finally, it appeared that there are no results on the 528
complexity of existing tree distance measures for the case when 529
all node labels are unique. This would also be worth investigating. 530
Acknowledgements 531

This work was sponsored by EPSRC grant number 532
EP/M0 0 0 060/1 and the ERC Consolidator Grant FORSIED (project 533
reference 615517). 534
References 535

[1] E.N. Adams III, Consensus techniques and the comparison of taxonomic trees, Q4 536
Syst. Zool. (1972) 390–397. 537

[2] J. Aucouturier, F. Pachet, Representing musical genre: a state of the art, J. New 538
Music Res. 32 (1) (2003) 83–93. 539

[3] K. Baker, P.C. Fishburn, F. Roberts, Partial orders of dimension 2, Networks 2 540
(1) (1972) 11–28. 541

[4] J.L. Balcázar, A. Bifet, A. Lozano, Mining frequent closed rooted trees, Mach. 542
Learn. 78 (1-2) (2010) 1–33. 543

[5] P. Bille, A survey on tree edit distance and related problems, Theor. Comput. 544
Sci. 337 (1) (2005) 217–239. 545

[6] F.J. Brandenburg, A. Gleißner, A. Hofmeier, Comparing and aggregating partial 546
orders with kendall tau distances, in: WALCOM: Algorithms and Computation, 547
Springer, 2012, pp. 88–99. 548

[7] K. Bremer, Combinable component consensus, Cladistics 6 (4) (1990) 369–372. 549
[8] Y. Chi, R. Muntz, J. Nijssen S.and Kok, Frequent subtree mining–an overview, 550

Fundam. Inform. 66 (1-2) (2005a) 161–198. 551
[9] Y. Chi, Y. Xia, Y. Yang, R. Muntz, Mining closed and maximal frequent subtrees 552

from databases of labeled rooted trees, Knowl. Data Eng. IEEE Trans. 17 (2) 553
(2005b) 190–202. 554

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, et al., Introduction to algo- 555
rithms, 2, MIT Press Cambridge, 2001. 556

[11] W.H. Day, Optimal algorithms for comparing trees with labeled leaves, J. Clas- 557
sif. 2 (1) (1985) 7–28. 558

[12] W. Galuba, K. Aberer, D. Chakraborty, Z. Despotovic, W. Kellerer, Outtweeting 559
the twitterers-predicting information cascades in microblogs., WOSN 10 (2010) 560
3–11. 561

[13] X. Gao, B. Xiao, D. Tao, X. Li, A survey of graph edit distance, Pattern Anal. 562
Appl. 13 (1) (2010) 113–129. 563

[14] J. Hsiang, M. Rusinowitch, Proving refutational completeness of theorem- 564
proving strategies: the transfinite semantic tree method, J. ACM (JACM) 38 (3) 565
(1991) 558–586. 566

[15] D.E. Knuth, The art of computer programming, volume 1: Fundamental algo- 567
rithms. 1968, Seminumer. Algorithms 3 (1969). 568

[16] E. Malmi, N. Tatti, A. Gionis, Beyond rankings: comparing directed acyclic 569
graphs, Data Min. Knowl. Discov. (2015) 1–25. 570

[17] T. Margush, F.R. McMorris, Consensusn-trees, Bull. Math. Biol. 43 (2) (1981) 571
239–244. 572

[18] T.A. McMahon, R.E. Kronauer, Tree structures: deducing the principle of me- 573
chanical design, J. Theor. Biol. 59 (2) (1976) 443–466. 574

Please cite this article as: M. McVicar et al., SuMoTED: An intuitive edit distance between rooted unordered uniquely-labelled trees,
Pattern Recognition Letters (2016), http://dx.doi.org/10.1016/j.patrec.2016.04.012

Matthew McVicar
Reference 1 is from Volume 21, No. 4

Matthew McVicar
Reference 16 is from Volume 29, Issue 5

http://dx.doi.org/10.13039/501100000266
http://dx.doi.org/10.1016/j.patrec.2016.04.012

8 M. McVicar et al. / Pattern Recognition Letters xxx (2016) xxx–xxx
ARTICLE IN PRESS

JID: PATREC [m5G; May 11, 2016;9:49]
[19] K. Mehlhorn, Data Structures and Algorithms: Graph Algorithms and NP- 575

Completeness, Vol. 2, Springer-Verlag, Heidelberg, Germany, 1984. 576
[20] G. Nelson, Cladistic analysis and synthesis: principles and definitions, with 577

a historical note on adanson’s familles des plantes (1763–1764), Syst. Zool. 578
(1979) 1–21. 579

[21] S.M. Selkow, The tree-to-tree editing problem, Inf. Process. Lett. 6 (6) (1977) 580
184–186. 581

[22] D. Shasha, J.T. Wang, S. Zhang, Unordered tree mining with applications to 582
phylogeny, in: Data Engineering, 2004. Proceedings. 20th International Confer- 583
ence on, IEEE, 2004, pp. 708–719. 584

[23] R.E. Stobaugh, Chemical substructure searching, J. Chem. Inf. Comput. Sci. 25 585
(3) (1985) 271–275. 586

[24] K.-C. Tai, The tree-to-tree correction problem, J. ACM (JACM) 26 (3) (1979) 587
422–433. 588

[25] G. Tzanetakis, P. Cook, Musical genre classification of audio signals, IEEE Trans. 589
Speech Audio Process. 10 (5) (2002) 293–302. 590

[26] K. Zhang, D. Shasha, Simple fast algorithms for the editing distance be- 591
tween trees and related problems, SIAM J. Comput. 18 (6) (1989) 1245– 592
1262. 593

Please cite this article as: M. McVicar et al., SuMoTED: An intuitive edit distance between rooted unordered uniquely-labelled trees,
Pattern Recognition Letters (2016), http://dx.doi.org/10.1016/j.patrec.2016.04.012

http://dx.doi.org/10.1016/j.patrec.2016.04.012
Matthew McVicar
Reference 20 is from Volume 28, Issue 1

	SuMoTED: An intuitive edit distance between rooted unordered uniquely-labelled trees
	1 Introduction
	2 Related work
	2.1 Distances between trees
	2.2 Computing consensus trees
	2.3 Limitations of existing work

	3 SuMoTED - Subtree Moving Tree Edit Distance
	3.1 Tree edit distances
	3.2 Local moves as tree edits
	3.3 The weight function for local moves
	3.4 A normalised similarity measure
	3.5 An extension to trees with different label sets

	4 An efficient algorithm to compute SuMoTED
	5 Experiments
	5.1 Deezer dataset
	5.2 ReverbNation dataset
	5.3 Commercial datasets
	5.4 Scalability experiments

	6 Conclusions and future work
	 Acknowledgements
	 References

